If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 4x2 = 353904 + -8968.8x + 50.5x2 Solving 4x2 = 353904 + -8968.8x + 50.5x2 Solving for variable 'x'. Reorder the terms: -353904 + 8968.8x + 4x2 + -50.5x2 = 353904 + -8968.8x + 50.5x2 + -353904 + 8968.8x + -50.5x2 Combine like terms: 4x2 + -50.5x2 = -46.5x2 -353904 + 8968.8x + -46.5x2 = 353904 + -8968.8x + 50.5x2 + -353904 + 8968.8x + -50.5x2 Reorder the terms: -353904 + 8968.8x + -46.5x2 = 353904 + -353904 + -8968.8x + 8968.8x + 50.5x2 + -50.5x2 Combine like terms: 353904 + -353904 = 0 -353904 + 8968.8x + -46.5x2 = 0 + -8968.8x + 8968.8x + 50.5x2 + -50.5x2 -353904 + 8968.8x + -46.5x2 = -8968.8x + 8968.8x + 50.5x2 + -50.5x2 Combine like terms: -8968.8x + 8968.8x = 0.0 -353904 + 8968.8x + -46.5x2 = 0.0 + 50.5x2 + -50.5x2 -353904 + 8968.8x + -46.5x2 = 50.5x2 + -50.5x2 Combine like terms: 50.5x2 + -50.5x2 = 0.0 -353904 + 8968.8x + -46.5x2 = 0.0 Begin completing the square. Divide all terms by -46.5 the coefficient of the squared term: Divide each side by '-46.5'. 7610.83871 + -192.8774194x + x2 = 0 Move the constant term to the right: Add '-7610.83871' to each side of the equation. 7610.83871 + -192.8774194x + -7610.83871 + x2 = 0 + -7610.83871 Reorder the terms: 7610.83871 + -7610.83871 + -192.8774194x + x2 = 0 + -7610.83871 Combine like terms: 7610.83871 + -7610.83871 = 0.00000 0.00000 + -192.8774194x + x2 = 0 + -7610.83871 -192.8774194x + x2 = 0 + -7610.83871 Combine like terms: 0 + -7610.83871 = -7610.83871 -192.8774194x + x2 = -7610.83871 The x term is -192.8774194x. Take half its coefficient (-96.4387097). Square it (9300.424729) and add it to both sides. Add '9300.424729' to each side of the equation. -192.8774194x + 9300.424729 + x2 = -7610.83871 + 9300.424729 Reorder the terms: 9300.424729 + -192.8774194x + x2 = -7610.83871 + 9300.424729 Combine like terms: -7610.83871 + 9300.424729 = 1689.586019 9300.424729 + -192.8774194x + x2 = 1689.586019 Factor a perfect square on the left side: (x + -96.4387097)(x + -96.4387097) = 1689.586019 Calculate the square root of the right side: 41.104574186 Break this problem into two subproblems by setting (x + -96.4387097) equal to 41.104574186 and -41.104574186.Subproblem 1
x + -96.4387097 = 41.104574186 Simplifying x + -96.4387097 = 41.104574186 Reorder the terms: -96.4387097 + x = 41.104574186 Solving -96.4387097 + x = 41.104574186 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '96.4387097' to each side of the equation. -96.4387097 + 96.4387097 + x = 41.104574186 + 96.4387097 Combine like terms: -96.4387097 + 96.4387097 = 0.0000000 0.0000000 + x = 41.104574186 + 96.4387097 x = 41.104574186 + 96.4387097 Combine like terms: 41.104574186 + 96.4387097 = 137.543283886 x = 137.543283886 Simplifying x = 137.543283886Subproblem 2
x + -96.4387097 = -41.104574186 Simplifying x + -96.4387097 = -41.104574186 Reorder the terms: -96.4387097 + x = -41.104574186 Solving -96.4387097 + x = -41.104574186 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '96.4387097' to each side of the equation. -96.4387097 + 96.4387097 + x = -41.104574186 + 96.4387097 Combine like terms: -96.4387097 + 96.4387097 = 0.0000000 0.0000000 + x = -41.104574186 + 96.4387097 x = -41.104574186 + 96.4387097 Combine like terms: -41.104574186 + 96.4387097 = 55.334135514 x = 55.334135514 Simplifying x = 55.334135514Solution
The solution to the problem is based on the solutions from the subproblems. x = {137.543283886, 55.334135514}
| -1/2(2/5x+2)=-6 | | 8-3x/5=6 | | -1/2(2/5+2)=-6 | | 2x-4/3=3x/2+2 | | -3.7=6 | | 8/2=-30/x | | y=(x+3)(x-3)(x-4) | | (7-4)x(8+3)= | | 3x+2/3(9) | | 72-9a=68-4a | | 3.8=7.4-0.9x | | 4x+5x-5=40 | | 26.36=5g+3.56 | | 9x^2-4x+2=0 | | 1/7(2x-5)=2/7x+1 | | (7a+13)+(a-5)=-16 | | 9x^2+4x+2=0 | | 25=7x+1-4x | | 1/10(3x-7)=3/10x+5 | | 7/5n+3/5=-n | | 3a-6a-(-2a)=0 | | 5/3x-7/3=x | | 2.4/4 | | 1/3.1/3 | | 1/3x-5=7 | | (7a+3)+(a-5)=-16 | | 8(5x+2)= | | 3(x-9)=4w | | y=-14x+16 | | m-2/m^2-5m+6 | | 13x+4y=21 | | 5(X-10)=4X-46 |